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Abstract. We propose a procedure to extrapolate the nuclear spectral function P (|k|, E) obtained from
nonrelativistic many-body theory to large values of three-momentum and removal energy. Our approach is
based on phenomenological information extracted from both soft hadron-nucleus interactions, in the regime
where the proton inclusive spectrum is dictated by Regge asymptotic, and deep-inelastic lepton-nucleus
collisions. The extrapolated P (|k|, E) is used to compute the semi-inclusive spectra of backward protons
produced in electron-nucleus scattering.

PACS. 13.60.Le Meson production – 25.30.Fj Inelastic electron scattering to continuum – 25.30.Rw Elec-
troproduction reactions

The knowledge of the spectral function P (|k|, E), giving
the probability to find a nucleon of momentum |k| and
removal energy E inside a nucleus, is a prerequisite for the
theoretical description of a number of reactions involving
nuclear targets. For both infinite nuclear matter and light
nuclei, with mass number A≤ 4, it is possible to carry out
accurate calculations of P (|k|, E) starting from a realistic
nuclear hamiltonian, fitted to nucleon-nucleon scattering
data and to the properties of few-nucleon bound states
[1,2]. In the case of medium-heavy nuclei, quantitative
estimates of the spectral function and its energy integral,
the momentum distribution n(|k|), can also be obtained,
using the local density approximation [3].

The spectral functions resulting from realistic many-
body calculations contain information on both the nuclear
mean field (at low |k| and E), and short-range nucleon-
nucleon correlations (at high |k| and E). Tipically, only
about 70% of the nucleons are in the states of low |k| and
low E, that can be described by mean field single-particle
wave functions, while the remaining 30% are in a corre-
lated state with another nucleon, mainly on account of the
one-pion-exchange tensor force and the short-range repul-
sion of the nucleon-nucleon interaction. The mean field
(P0(|k|, E)) and correlation (PB(|k|, E)) contributions to
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the spectral function can be singled out rewriting the full
P (|k|, E) in the form

P (|k|, E) = P0(|k|, E) + PB(|k|, E) . (1)

Strongly correlated nucleons play a very important role
in many processes. For example, the production of fast
backward hadrons in semi-inclusive lepton-nucleus reac-
tions, in the kinematical region forbidden to scattering off
a free nucleon, is mostly due to nucleon-nucleon correla-
tions [4,5]. While many-body calculations typically pro-
vide a description of the correlation tail of P (|k|, E) up
to kmax ∼ .7 GeV/c and Emax ∼ .6 GeV, the theoretical
analysis of the available spectra of leptoproduced back-
ward hadrons carrying large momentum [6] requires the
knowledge of the nuclear spectral function at larger val-
ues of |k| and E [4]. In this note, we propose a simple
phenomenological procedure that allows one to extrapo-
late the correlation contribution, PB(|k|, E), beyond the
region covered by nuclear many-body theory.

Let us consider a process in which a four-momentum
q ≡ (ν,q) is transferred to a nuclear target. Our starting
point is the relationship between the nuclear spectral func-
tion and the function fA(z), yielding the distribution of
the nucleons in the target as a function of the relativistic
invariant variable z, defined as

z =
MA

m

(kq)
(PAq)

. (2)
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In the above equation m is the nucleon mass, whereas
PA ≡ (MA, 0), MA being the target mass, and k ≡ (k0,k)
denote the initial nuclear and nucleon four-momentum in
the target rest frame, respectively. The distribution func-
tion fA(z) can be written in a general fashion as

fA(z) = z

∫
d4k S(k) δ

(
z − MA

m

(kq)
(PAq)

)
, (3)

where S(k) is the relativistic function describing the nu-
clear vertex with an outgoing nucleon of four-momentum
k (see, e.g., [7]). S(k) can be approximated by the nonrel-
ativistic spectral function according to [8]

S(k) =
(
m

k0

)
P (|k|, E) , (4)

with

k0 = MA −
[
(MA −m+ E)2 + |k|2

]1/2
. (5)

Note that the above definition implies that fA(z) also de-
pends upon Q2 = −q2, as pointed out in [8]. However, in
the following we will be assuming that the Bjorken limit
(Q2, ν → ∞) is applicable, so that z can be related to
the light-cone component of the nucleon four-momentum
through z = (k+/m) = (k0 − kz)/m (kz = (kq)/|k||q|)
and the Q2-dependence of fA(z) disappears.

Substituting (4) into (3) we can rewrite fA(z) in terms
of P (|k|, E) as

fA(z) = 2πmz
∫ √s−MA

Emin

dE

×
∫ ∞
kmin(z,E)

d|k||k|
(
m

k0

)
P (|k|, E) (6)

where Emin is the minimum energy required to remove a
nucleon from the target nucleus, s = (PA + q)2 and (for
simplicity, we work in the infinite nuclear matter limit,
MA → ∞, in which the kinetic energy of the recoiling
nucleus becomes vanishingly small)

kmin(z, E) = |m(1− z)− E| . (7)

The above equations imply that the large z behavior of
fA(z) is dictated by the high |k| tail of P (|k|, E), i.e. from
its correlation part PB(|k|, E). For example, at z > 1.7
only momenta larger than kmax ∼ .7 GeV/c, contribute
to the integral of (6).

In [4] we have developed a procedure to evaluate the
asymptotic behavior of fA(z) without making use of the
nuclear spectral function. Within this approach, based on
ideas originally proposed in [9,10], fA(z > 1) can be writ-
ten as a sum of distributions fn(z/n), describing clusters
of n (n ≥ 2) strongly correlated nucleons, whose asymp-
totic behavior as z → n can be evaluated for any value of
Q2. We will show that using the large z behavior of fA(z)
resulting from the approach of [4] and (6) one can extract
information on the behavior of P (|k|, E) at very large |k|
and E.

For any given |k|, the nuclear matter PB(|k|, E) of [1]
exhibits a bump located at E ∼ Ek =

√
|k|2 +m2 −m,

the energy needed to remove a nucleon of momentum k
belonging to a strongly correlated pair of vanishing total
momentum, whose width increases with |k|. A remarkably
accurate fit to the behavior of the correlation contribution
to the calculated spectral function has been obtained in
[11], where PB(|k|, E) has been written in the form

PB(|k|, E) = nB(|k|)F (|k|, E) , (8)

with
nB(|k|) =

∫ ∞
Ethr

dE PB(|k|, E) , (9)

Ethr being the minimum energy required to remove a nu-
cleon pair. The function F (|k|, E) is defined as

F (|k|, E) =

Nk exp


[√

m(E − Ethr)−
√
m(Ek − Ethr)

]2
2σ2

k

 , (10)

where σk is related to the width Γk through

Γk = 4 σk
√

(2 ln2)(Ek/m) = 〈EB〉+ Ek , (11)

〈EB〉 being the average removal energy associated with
PB(|k|, E) (using the spectral function of [1] one finds
〈EB〉 ∼ 40 MeV). The normalization constant Nk is cho-
sen in such a way as to fulfill the sum rule∫ ∞

Ethr

dE F (|k|, E) = 1 , (12)

which in turn guarantees the overall normalization of
PB(|k|, E).

Our extrapolation procedure is based on the assump-
tion that at very large values of |k| and E the energy
dependence of PB(|k|, E) is still dominated by the contri-
bution associated with the removal of a correlated nucleon
pair, and can be described by F (|k|, E) of (10). As a con-
sequence, the extrapolation of P (|k|, E) reduces to the
extrapolation of nB(|k|).

Substitution of (8) into (6) leads (after inversion of
the integration order) to the following expression for the
correlation contribution to fA(z) at large z:

fBA (z) = 2πmz
∫ ∞
kmin(z,Ethr)

d|k| Φ(|k|) , (13)

with

Φ(|k|) = |k| nB(|k|)
∫ |k|−m(z−1)

Ethr

dE

(
m

k0

)
F (|k|, E) ,

(14)
implying in turn

φ′(z) =
d

dz

(
fBA (z)
z

)
= −2πm2Ψ(z) , (15)
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where

Ψ(z) = m

∫ ∞
Ethr

dE
E +m(z − 1)

m− E nB(E +m(z − 1))

×F (E +m(z − 1), E) . (16)

Knowing the distribution function fBA (z), which can be
obtained from the approach developed in [4] for any values
of z > 1, the function Ψ(z) appearing in left hand side of
the above equation can be readily evaluated. Hence, inver-
sion of (16) at z > 1.7 would immediately yield nB(|k|) at
|k| > kmax. In general, however, (16) cannot be inverted
analytically. To circumvent this problem we have used a
parametrized nB(|k|) in the right hand side of (16), with
the values of the parameters adjusted in such a way as to
reproduce Ψ(z) evaluated according to [4].

At kF < |k| < kmax, kF ∼ .25 GeV/c being the Fermi
momentum, the behavior of the momentum distribution
of [1] is nearly exponential, and can be accurately approx-
imated using

n0(|k|) = G1exp[−(B1|k|)α] , (17)

with G1 = 3.30 (GeV/c)−3, B1 = 6.2 (GeV/c)−1 and α
= 1.14.

The most natural choice is to use a similar form to
calculate the right hand side of (16) for z > 1.7. It should
be noted, however, that the integrand in (16) has a sin-
gularity at E = m. This problem has been taken care
of inserting a cutoff to guarantee that nB(|k|) vanish at
|k| = mz. The parametrization of nB(|k|) providing the
best fit to Ψ(z) turns out to be

nB(|k|) = exp
[
−β
( |k| − k0

Λ− |k|

)]
n0(|k|) , (18)

where β = .001, k0 ∼ kmax, Λ = mz0 = m + k0 + Ethr
and

n0(|k|) = G1exp[−(B1|k|)α] +G2exp(−B2|k|) , (19)

with G1 = 2.90 (GeV/c)−3, B1 = 6.08 (GeV/c)−1, G2

= -21.2 (GeV/c)−3 and B2 = 26.7 (GeV/c)−1. With the
above choice of nB(|k|), the right hand side of (16) is well
defined and can be calculated for any z0 < z < 2, the
upper limit being dictated by the fact that (10) is only
appropriate to describe correlated two-nucleon clusters.

The results of numerical calculations show that sub-
stituting nB(|k|) defined by (18)-(19) into (14), and using
(13), the distribution function fBA (z) of [4] is reproduced
to a very high accuracy in the range 1.7 < z < 2.

A more straightforward procedure to extract nB(|k|)
from (15) can be obtained making the rather drastic as-
sumption that in (16) the function F (|k|, E) can be re-
placed by a δ-function:

F (E+m(z−1), E) = δ(E−(
√

(E+m(z−1))2+m2−m)).
(20)

Using (20) the E integration in (16) can be readily carried
out and substitution of the result into (15) leads to:

nB(ks) =
1

2πm2ks

(3− z2)(2− z)
(2− z)2 + 1

φ′(z) , (21)

with ks = m(z−1)(z−3)/(2(z−2)). Eq.(21) gives nB(|k|)
in terms of φ′(z) for any values of z in the range 1 < z <√

3.
Let us now focus on the calculation of the left hand

side of (15). According to [4], at large values of its argu-
ment fBA (z) can be written as a sum, whose terms describe
the contributions associated with strongly correlated n-
nucleon clusters:

fBA (z) =
A∑
n=2

fn

( z
n

)
, (22)

the n-th term in the sum being defined for 1 < z < n.
Within this approach the calculation of fBA (z) reduces to
the calculation of the relevant fn(z/n)’s, corresponding to
the lowest values of n (tipically n = 2 and 3). The anal-
ysis of nuclear fragmentation in hadron-nucleus collisions
carried out in [9,10] shows that, at low Q2, the distribu-
tion of colorless three-quark systems in a 3n-quark clus-
ter, Tn(z/n), exhibits true Regge asymptotic behavior as
z → n. The results of [9,10] provide a satisfactory de-
scription of the inclusive spectra of high-momentum pro-
tons and mesons emitted backward in proton-nucleus col-
lisions. However, the sizeable Q2-dependence exhibited by
fA(z) at low Q2 [8] suggests that the nonpertubative Q2-
dependence of Tn(z/n) has to be carefully taken into ac-
count. Starting from the small Q2 behavior, which can
be described within the framework of Regge theory, the
asymptotic Tn(z/n) at z → n and large Q2 can be ob-
tained from the distribution of valence quarks inside a
cluster of n strongly correlated nucleons, which can in
turn be written in terms of the relativistic invariant phase-
space volume available to a quark in a nucleon [4].

The function Tn(z/n) can be interpreted as the distri-
butions of effective nucleons within a strongly correlated
cluster. Therefore, assuming that the valence quark dis-
tribution inside these effective nucleons is the same as in
ordinary nucleons, the quantity T̃n(z/n) = wnTn(z/n),
wn being the probability of finding an n-body cluster [4],
can be identified with fn(z/n) of (22). The validity of this
approximation, which allows one to effectively take into
account nuclear excitations, is supported by the results
of calculations of the valence quark distributions inside
nucleons and baryonic resonances [12,13].

Writing the distribution of valence quarks inside a nu-
cleon at large Q2 in the form

fNqv (z) = CNz
aN (1− z)bN , (23)

where CN is a normalization constant, aN = −αR(0) =
1/2, αR(0) being the intercept of the Regge trajectory,
and bN ∼ 2.8− 3.2, the behavior of T̃n(z/n) as z → n can
be obtained in closed form [14]. Under the assumption
T̃n(z/n) = fn(z/n) we can use this result and write:

fn

( z
n

)
= Dn

( z
n

)An [
1−

( z
n

)]gn
, (24)

with gn = (aN + bN + 2)(n− 1)− 1 and An = aN + bN +
1, whereas the coefficients Dn can be obtained from the
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Fig. 1. The nucleon momentum distribution in infinite nu-
clear matter. The solid line corresponds to the nB(|k|) of
[1], whereas the diamonds show the large |k| extrapolation
parametrized according to (18)-(19). The dashed line has been
obtained using the δ-function approximation of (20)

quark distribution in the n-nucleon cluster, evaluated as
in [4]. The details of the derivation of (24) are given in the
Appendix.

Substituting the fn(z/n)’s with n = 2,3 and 4, cal-
culated from (24), into (22), one can easily obtain both
fBA (z) and its first derivative at z < 4. The resulting φ′,
defined as in (15), can be written:

φ′(z) = I2 + I3 + I4 , (25)

where In(z) is defined for z < n and

I2 =
1
2
D2

(z
2

)A2−2 [
1−

(z
2

)]g2−1

×
{

(A2 − 1)
[
1−

(z
2

)]
− g2

(z
2

)}
, (26)

I3 =
1
3
D3

(z
3

)A3−2 [
1−

(z
3

)]A3−2 [
1−

(z
3

)]g3−1

×
{

(A3 − 1)
[
1−

(z
3

)]
− g3

(z
3

)}
(27)

I4 =
1
4
D4

(z
4

)A4−2 [
1−

(z
4

)]g4−1

×
{

(A4 − 1)
[
1−

(z
4

)]
− g4

(z
4

)}
. (28)

With φ′(z) given by (25)-(28), the function Ψ(z) ap-
pearing in the left hand side of (16) can be readily eval-
uated. Hence, the momentum distribution can be ob-
tained using either (16) and the fitting procedure or the
δ-function ansatz leading to (21).

Figure 1 shows the nuclear matter momentum distri-
bution n(|k|) of [1], calculated for |k| ≤ .8 GeV/c (solid
line), together with the values obtained from the fit to

Fig. 2. Kinetic energy spectra of protons emitted at angle
Θ in the semi-inclusive reaction e + CO → e′ + p + X. The
dashed curve has been obtained using the nucleon momentum
distribution of [1] at |k| < kmax ∼ 0.8 GeV/c and assuming
nB(|k| > kmax) = 0, whereas the solid line shows the results
obtained using the large |k| extrapolation, parametrized ac-
cording to (18)-(19), at |k| > kmax. The experimental data are
taken from [6]

φ′(z) at |k| > .8 GeV/c (diamonds). It appears that the
extrapolated tail of n(|k|) is close to a simple exponential
dependence. The results obtained using the δ-function ap-
proximation, which provides an upper bound to nB(|k|)
at |k| > .8 GeV/c are also shown in Fig. 1 (dashed line).
It is apparent that the energy spread of the strength is
very important and cannot be disregarded.

To test the extrapolated momentum distribution, we
have calculated the kinetic energy spectrum of protons
emitted at backward angle in the semi-inclusive e+ A→
e′ + p + X reaction, in the kinematics of the SLAC data
of [6], using [4]

ρeA→e′pX(x,Q2, z) =
IeN
IeA

nB [|k|(z)]FN2 (x,Q2) . (29)

In the above equation, FN2 (x,Q2), x being the Bjorken
scaling variable, is the nucleon structure function, while
IeN and IeA denote the fluxes associated with scattering
off an isolated nucleon and the nuclear target, respectively.
In Fig. 2 the spectrum obtained using the nucleon mo-
mentum distribution of [1] at k < kmax ∼ .8 GeV/c and
setting nB(|k| > kmax) = 0 is compared to that obtained
using n(|k| > kmax) obtained from the fit to fBA (z) at
z ≥ 1.7. It appears that the extrapolated nB(|k|), needed
to describe the spectrum at large proton energy (T ≥ .3



O. Benhar et al.: On the behavior of the nuclear spectral function at high momentum and removal energy 141

GeV), also provides a much better description of the data
at lower T.

In conclusion, we have proposed a simple phenomeno-
logical procedure that allows one to extrapolate the nu-
clear matter spectral function beyond the region described
by nonrelativistic many-body calculations. The main as-
sumption needed to extract nB(|k|) from the relationship
between the spectral function and the distribution func-
tion fA(z), i.e. the assumption that PB(|k|, E), exhibits
the E-dependence associated with the removal of a nu-
cleon belonging to a strongly correlated pair, appears to be
adequate in the range of momentum and removal energy
relevant to our analysis, corresponding to z < 2. The im-
portance of the description of the E-dependence is clearly
shown by the fact that the oversimplified δ-function ansatz
leads to a severely overestimated momentum distribution.
The numerical results shown in Figs. 1 and 2 suggest that
our approach can be used to quantitatively investigate re-
actions sensitive to the very high momentum components
of the nuclear wave function.
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edge many helpful discussions with A. Fabrocini.

Appendix A

In [4] it has been shown that, assuming that the distribu-
tion of valence quarks inside an isolated nucleon can be
described by

fNqv (z) ∼ zaN (1− z)bN , (A1)

the corresponding distribution inside a strongly correlated
n-nucleon cluster, obtained from the overlap of the phase-
space volumes available to a quark inside a nucleon, takes
the form

f (n)
qv

( z
n

)
= Cn

( z
n

)aN [
1−

( z
n

)][bN+(aN+bN+2)(n−1)]

,

(A2)
where the coefficient Cn can be written in terms of beta-
functions.

The function f
(n)
qv (z/n) can also be given in terms of

the distribution of colorless three-quark systems within a
3n-quark cluster, T̃n(z′), using Mellin’s convolution for-
mula:

f (n)
qv

( z
n

)
=
∫ 1

(z/n)

T̃n(z′)f3Q
qv

(
1
n

z

z′

)
dz′

z′
, (A3)

where f3Q
qv (z/nz′) denotes the distribution of valence

quarks inside the colorless three-quark system.
Assuming that at large z/(nz′) f3Q

qv (z/nz′) is approxi-
mately the same as the distribution inside a nucleon, e.g.
assuming f3Q

qv ∼ fNqv , and using (A1), (A3) can be inverted
to obtain T̃n(z) in the form:

T̃n(z) = Dnz
An(1− z)gn , (A4)

with Dn, An and gn given in terms of the constants Cn,
aN and bN appearing in (A2).

Within this approximation (A4) reduces to (24), since
T̃n can be identifyed with fn, which can in turn be inter-
preted as the distribution of colorless three-quark systems
inside of a strongly correlated n-nucleon cluster.
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